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Abstract-The general conditions under which condensation within the thermal boundary layer can 
enhance the diffusion-limited evaporation rates of liquids or solids in cooler environments are examined 
analyticaNy, based on the notion that condensation occurs where a “critical supersaturation” is achieved. 
Simple expressions are derived for the expected enhancement in terms of the dimensionless heat of vapori- 
zation A/RT, the critical supersaturation evaluated at the surface temperature s,,,(TW) = p.. E,l,/pV, JT,), 
and a parameter governing the temperature dependence of scrir These results clearly display the thermo- 
dynamic and transport conditions under which large enhancements can be expected. The facility with which 
they can be used for absolute predictions and comparison with available data is illustrated for the case of 

molten iron spheres evaporating into quiescent helium at atmospheric pressure. 
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NOMENCLATURE 

exponent appearing in equation (21); 
constants [cf., e.g. equation (21)] ; 
exponent appearing in equation (21); 
constants [cf., e.g. equation (21)] ; 
diffusion-limitedvaporization(“blow- 
ing”) parameter, equation (32); 
local mass fraction of vapor, equation 
(11); 
specific heat ; 
Fick binary diffusion coefficient for 
vapor diffusion relative to species k ; 
Grashof number [ 1 l] ; 
molecular weight ; 
vaporization rate; 
volumetric nucleation rate ; 

Lewis number, L,,ixl[~/-l(~~p&,ix; 

l Revised and extended version of AeroChem TP-130, 
31 March 1966.ThisreaearchwascarriedoutundaCootracts 
AF49(638)1637 and AF49(638)16W with the U.S. Air 
Force Oflice of Scientilic Research-Propulsion Division. 

MT,; 
NIW; 
dimensionless transfer coefficient 
(Nusselt number); 
parameter defined by equation (2) 
A = N/R when “log” E log,; 
total pressure ; 
local vapor pressure; 
Prandtl or Schmidt number [ 1 l] ; 
universal gas constant ; 
Reynolds number [ 1 l] ; 

sc,iA L-1 ; 
critical supersaturation E 

(PtJlP,. &it; 
local absolute temperature; 
thermodynamic critical temperature 
of substance ; 
mole fraction of species k (k = 1, 

2, . . .); 
dimensionless location of nucleation, 
equation (7) ; 
distance normal to vaporizing surface. 
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Greek symbols 
evaporation coefficient, cf. equation 

(22) ; 
evaporation resistance parameter, cf. 
equation (23); 
effective thickness of the vapor-pres- 
sure boundary layer in the absence of 
condensation, cf. Fig. 1; 
effective thickness of the thermal 
boundary layer, cf. Fig. 1; 
effective thickness of the vapor-pres- 
sure boundary layer in the presence 
of condensation, cf. Fig. 1; 
dimensionless thickness of the vapor- 
pressure boundary layer in the pres- 
ence of condensation, cf. equation (9); 
molar heat of vaporization (or subli- 
mation) ; 
thermal conductivity ; 
local mass density of vapor-gas mix- 
ture ; 

Subscripts 
cl-it, critical ; 

eq, equilibrium ; 
max, maximum ; 
min, minimum ; 
mix, mixture ; 

n, nucleation ; 

u, vapor ; 

V?G into a vacuum ; 

W, at wall (vaporizing surface); 
y = 0, at wall (vaporizing surface); 

n”’ 
far from the vaporizing surface ; 

6 

pertaining to heat transfer; 
pertaining to diffusional mass trans- 
fer. 

1. ITVTRODUCI’ION 

DIFFUSION-LIMITED vaporization rates of liquids 
or solids into cooler gaseous media are usually 
predicted under the assumption that vapor 
condensation does not occur close enough to 
the surface to locally modify the vapor concen- 
tration profile. This assumption leads to a lower 

limit to the vaporization rate, since conden- 
sation within the thermal boundary layer would 
provide a vapor “sink” and hence steepen the 
vapor concentration gradient normal to the 
surface (i.e. “thin” the vapor concentration 
boundary layer). This sort of enhancement, in 
many ways analogous to that produced by 
chemical reaction within the boundary layer 
[l, 21, has recently been illustrated by Turk- 
dogan and Mills [3] for the case of induction- 
heated, molten iron-nickel alloys evaporating 
into helium. In a companion paper, Turkdogan 
[4] has proposed a simple model (based on the 
notion that condensation commences where a 
critical supersaturation is attained within the 
thermal boundary layer) which allows the en- 
hancement to be predicted by a graphical 
technique if certain transport and thermo- 
dynamic data are available or estimable. While 
definitive experiments are apparently not yet 
available, indications are that this model cor- 
rectly estimates the magnitude of the observed 
condensation effect. Unfortunately, while con- 
ceptually simple, the numerical-graphical cal- 
culations [4] themselves are rather tedious and 
lack generality. Our purpose here is to cast the 
critical supersaturation model into a far more 
transparent and usable form with the help of 
several reasonable analytical-physical approxi- 
mations. This new formulation should facilitate 
future comparisons with experimental data and, 
perhaps more important, prove helpful in 
visualizing the conditions under which appreci- 
able enhancements are to be expected. Sufft- 
ciently generalized and verified, the present 
treatment (when “inverted”) may even offer a 
new method for inferring nucleation kinetic data 
from quasi-steady state vaporation data in, say, 
“diffusion cloud chambers” (see, e.g. J. L. Katz 
and B. J. Ostermier, J. Chem. Phys., to be 
published). 

2. THE CRlTICAL SUPER!iJATURATION MQDEL 

We first confine our attention to the simplest 
possible case, in which the equilibrium vapor 
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pressure is established at the vaporizing surface, 
and this pressure is assumed to be small com- 
pared to the total pressure of the system.* We 
also assume that the heat released upon con- 
densation negligibly perturbs the steady-state 
temperature distribution near the heated surface. 
Under these circumstancest the mechanism of 
condensation-enhanced vaporization can be 
understood with reference to Fig. 1, which 
displays actual and hypothetical vapor pressure 
profiles, p,(y), in the immediate vicinity of the 

FIG. 1. Temperature and vapor pressure profiles in the 
immediate vicinity of a vaporizing surface. 

surface, as well as the actual temperature profile 
T(y) established as a result of nonradiative heat 
loss. Two extreme cases are now readily 
visualized. In one (shown dashed) condensation 

l Implying that: (i) the nonzero net mass transfer due to 
vaporization is small enough to have a negligible effect on 
the temperature and concentration profiles near the surface 
and, hence, a negligible eITect upon the heat- and mass- 
transfer coefficients [5] and (ii) the thermodynamic and 
transport properties of the gas mixture are not appreciably 
influenced by the presena of the vapor. 

t Quantitative conditions for the validity of these assump 
tions are given in Section 4.4. 

does not occur within the thermal boundary 
layer-this obviously leads to the smallest slope 

( - +,/hq, = 0. and hence the minimum diffu- 
sional flux of vapor away from the surface. The 
second extreme is that in which condensation 
maintains the local vapor pressure at the 
thermodynamic equilibrium value pV, ,(T), cor- 
responding to each temperature, T(y), within 
the boundary layer. As shown below, this leads 
to a readily calculable upper bound to the 
evaporation rate, since ( - ilp,/dy),= o then takes 
on its maximum possible value. In general, the 
actual vapor pressure profile will fall between 
these two extremes and will reflect a balance 
between the local rate of vapor depletion by 
nucleation-droplet growth and the net influx of 
vapor per unit volume by diffusion+onvection 
processes. Moreover, as will be seen [cf. Section 
3.4, equation (17)], the wide difference between 
the maximum and minimum possible vaporiza- 
tion rates (frequently more than one order of 
magnitude) certainly justifies a rational quan- 
titative treatment of the intermediate case. 
Unfortunately, calculation of the actual vapor 
pressure profile entirely “from first principles” 
is rarely possible or justifiable due to consider- 
able uncertainties in the law governing the local 
rate of nuclei formation, J(p, T), and particle 
growth, not to mention the many inadequately 
known property values required as input infor- 
mation [6]. However, it is well established that, 
at any fixed temperature, J(p,, T) has the prop- 
erty of being very small until a “threshold” 
region of p,/p,. ,,(T) is reached, above which 
nucleation rate is usually too fast to follow 
experimentally. This property has led to the 
notion of a “critical supersaturation”, sCti, = 
(p,/p,, Jcri,. below which the nucleation rate can 
be neglected.* Since some experimental data on 
the variation of sCtit with temperature are 
available for vapors of interest, it is reasonable 

l In steam turbine practice [7], this property underlies 
the engineering utility of the so-callaJ “Wilson-line” for 
estimating the location of condensation on the Mollier 
(enthalpy vs. entropy) diagram. 
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to first explore the consequences of this ideali- 
zation * in predicting enhanced vaporization 
rates. 

If the critical supersaturation ratio. s+ is 
known at each temperature T(y). then one can 
construct the hypothetical vapor pressure pro- 
tile, pv. &y), required for nucleation (see Fig. l), 
assuming that foreign nuclei are absent in the 
region of interest.7 Vapor fluxes corresponding 
to values of (- iTpv/~y),= o such that p,(y) does 
not intersect pu,&y) are at once ruled out. 
since the necessary pv,cri, condition is never 
achieved. Clearly, the maximum flux compatible 
with the local attainment of pv,cri, is that 
corresponding to the singular case for which the 
actual vapor pressure profile p,(y) is also tangent 
to p,,E&) at their point of intersection. With 
regard to the possibility of smaller steady-state 
fluxes, it seems reasonable to assume that once 
pv, crit has been achieved locally, the nucleation- 
growth rate is large enough to prevent pv from 
exceeding pv,crit(y) in the cooler parts of the 
boundary layer. Since, in the steady state, the 
vapor flux emerging from the nucleation region 
cannot exceed that entering (a condition on the 
change in ~YpJ8y across the nucleation region), 
these latter two requirements imply that the 
actual vapor flux will be the maximum com- 
patible with the local attainment of pv.cri,Cy), 
corresponding to the tangency condition men- 
tioned above and depicted in Fig. 1. This 
tangency condition, first adopted by Turkdogan 
[4], simultaneously defines the point n (cf. Fig. 1) 
at which nucleation “commences” within the 
thermal boundary layer and thereby determines 
the actual steady-state vapor pressure gradient 
(-3pJay),= ,, = pc. Ed, ,/6, established in the 

..-. .-. .-. 
* This is analogous to the “ignition temperature” 

approximation [S] which proved useful in understanding 
many properties of combustion waves. In that case the 
chemical reaction rate was assumed to be negligible below 
the “ignition temperature”. 

t This implies that the fluid-particle mechanics in the 
boundary layer are such as to prevent nuclei or particles 
formed in the cooler regions of the flow from being swept 
into the nucleation region considered here in appreciable 
numbers. 

presence of nucleation-condensation.* By com- 
bining available equilibrium vapor pressure and 
heat-transfer data with quantitative estimates 
of the required transport properties and critical 
supersaturation Turkdogan has carried out such 
calculations graphically for the case of molten 
iron (and iron-nickel alloy) spheres evaporating 
into helium. Under the conditions treated 

(T, = 23OO”K, T, z 350”K, p = 1 atm). con- 
densation was found to enhance the vaporization 
rate by a factor of about three (see Section 4.3). 

3. GENERAL ANALYTICAL TREATMENT 

3.1 Additional assumptions 
Since the critical supersaturation model out- 

lined above is approximate to begin with, we 
should not hesitate to introduce further ap- 
proximations provided they can lead to (i) an 
appreciable simplification in the computational 
procedure, (ii) significant insight into the im- 
portant parameters governing the enhancement 
and (iii) open the way for further analytical 
generalizations and extensions of the theory. 
With these ends in mind, we introduce the 
following additional assumptions : 

(a) The distance yn to the point of nucleation is 
small compared with the local radius of curva- 
ture of the surface. 
(b) The actual temperature profile up to the 
point of nucleation is linear, with the slope 

(Way),= o. 

(c) The actual critical supersaturation vs tem- 
perature relation is (locally) well represented by 
log s,,tt = A . (l/T) + B where A and B are 
constants. 
(d) The equilibrium vapor pressure relation is 
well represented by the Clausius-Clapeyron 
equation : pD. ,,(T) = const . exp ( - A/R T), where 
the molar heat of vaporization, A, may be 
considered constant for each substance over the 
temperature range (T, - Td of interest. 

- _ ._ 
* For simplicity we explicity cottsider here the case 

p,. ~ 6 p.. y The present treatment is easily extended to the 
case when the vapor pressure p,, m is not negligible com- 
pared with p#, v 
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Of these assumptions, (a) and (b) (which are 
self-consistent) am best examined a posterior? 
(cf. Section 4.1), and (d) is known to be accurate ; 
hence, only (c) warrants comment here. 

Figure 2 shows Turkdogan’s predicted scrit( T) 
relation for iron vapor (in log,,, Scri( vs. l/T 
coordinates). Strong concavity is noted only at 
temperatures well below the melting point of 
iron, where the underlying nucleation theory 
itself becomes uncertain since the relevant nuclei 
may be solids. Also, if one examines available 
experimental data and predictions of S,,it vs. T 
for water vapor (summarized in [6]), one again 
notes that the curvature is slight in log scrit vs. 
l/T coordinates. In view of the exponential form 
of the equilibrium vapor pressure relation, (d), 
this suggests the convenient approximation* 

S,,it = const . exp (NIRT) 

where? (cf. Fig. 2): 

(1) 

N=R d(ln Scri3 
[ 1 d(l/T) rzT, = const’ (2) 

JV = N/(RT,) (4) 

9 s SdTw) = b&v: eq(TJIcrit (5) 
Hence, the enhancement in vaporization rate 
can be calculated once and for all in terms of 
these basic parameters. 

The tangency condition (cf. Fig. 1) provides 
the following transcendental equation for the 
position of nucleation : 

1 - Yexp(Z - N).exp[-(2 - X)/(1 - Y)] 

Y exp (9 - N) . exp [ - (U - J”)/(l - Y)] 

= (2 - WY 
(1 - Y)2 (6) 

where Y(L? - N, 9”) is the dimensionless value 
of y., i.e. 

_ Tw - Tn 
Tv . 

(7) 

From the value of Y satisfying equation (6) we 
can then compute the dimensionless form of the 
thickness 8, governing (- @,/dy),= o, i.e. 

A= 
(1 - Y)Z 

y.(L? - J).exp(LZ - N).exp[-(2 - Jr/-)/(1 - Y)] 
(8) 

3.2 The tangency condition 
where 

Subject to (a) through (d) one can now analyti- 
cally formulate the tangency condition displayed (9) 

in Fig. 1 and solve for the dimensionless value 
of the thickness 6, = pU, ,(T,)/(-dp~py),=, in 
terms of only two dime&onless parameters, viz. 
(LE’ - JV) and 9, where 

3.3 Calculation of the enhanced vaporization rate 
Considering only vapor transport by Fick 

_!Z - A/(RT,) (3) diffusion, the outward flux of vapor from the 

* The Gibbs-Kelvin equation [6,9] reveals that the validity of this approximation is related to the temperature depend- 
ence of both the surface tension (or surface free energy) of the nucleus and its molecular volume. If these physical quantities 
were temperature independent log Sag would be linear in l/T* (see [9]). Interestingly enough, experimental relations similar 
to equation (1) have proven useful in the description of vapor nucleation on surfaces (see [lo]). 

= 1 at the thermodynamic critical temperature (or, somewhat reluctantly, rewritten: sCtig eri, = l!); hence equations 
(l:at$2) imply that the constant appearing in equation (1) is of the order of exp (-N/RT,,J. 
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surface will be given by 

j” = -~~-mixP~(~)]y~o 
(10) 

where c is the local mass fraction of the vapor, 
given by 

&L- -. M, P” 

P Mmix ’ P 
(11) 

T. *K 

2ooo 1500 

7 / /’ 
,OE/quotion (I) 

IO41 T, (“Kl-’ 

FIG. 2. Predicted critical supersaturation vs. temperature for 
iron vapor [4] (solid curve); the exponential approximation 

(dashed). 

Consistent with the assumed diluteness of the 
metal vapor, c is small* so that the mean 
molecular weight of the mixture, M,, may be 
identified with the mean molecular weight of 
the surrounding gas. Moreover, if the mixture 
behaves like a perfect gas and p rz const, then 
equation (10) can be written explicitly in terms 
of(-JP,/~Y),=o: 

* This implies that Dv-ma can be calculated from the 
relation 

D”-mi. = (5” xkP,,-,I - 1 

Let us denote by j”,,,i, the evaporation rate in 
the absence of any enhancement, but with all 
other heat- and mass-transfer conditions the 
same. Then it is clear from equation (12) that 

.,I 

(- aP"PY)y=o Jk = [(-8pJdy)~=O]min = i 

=$. 1_$ .I 
[ 1 w A 

(13) 
T 

where the last equality follows from the defini- 
tions of A and 6, (cf. Fig 1). But in gaseous 
media, under identical fluid dynamic conditions, 
the ratio of the ordinary concentration 
boundary-layer thickness, 6, to the thermal 
boundary-layer thickness, &, is quite accurately 
given by the ratio of the heat-transfer coefficient 
(Nusselt number, NuJ to the mass-transfer 
coefficient (Nusselt number,* NuJ [ll]. We 
thus arrive at the remarkably simple and useful 
result : 

.,I 

.I Nun T, 
,z=G’ [ I 

1 

I-T, ‘A(_%‘-.N-,Y) 
(14) 

which according to the present model, applies 
for conditions such that ~‘/~~i”) B 1. 

3.4 Calculation of the maximum possible vapori- 
zation rate 

Disregarding equation (14) (for the moment), 
one can readily obtain an expression for 
j” ij”. by combining equation W&I the notion *ax ml” 
of local thermodynamic equi1ibrium.t The latter 
condition implies p,(y) = p”. ,[(T(y)], hence 

[(-%)J_ = (-%)yzo 
= (%jT=Tw(-gjy.; u5) 

* Often referred to as the Sherwood number in the 
United States chemical engineering literature. 

t In a manner closely related to the treatment of energy 
transfer in chemically reacting equilibrium gas mixtures [12]. 
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But, from the Clau~u~Cla~~on equation (d) of A (and, hence, large en~~en~ in vapori- 
we readily find zation rate) are obtained when the reauired 

_ PW9.W 2 
(“critical”) supersaturation at the wall tem- 

T, * * 
(16) perature is not large compared to unitv. but 

T=T, Ip - N is large. Physically, these conditions 

Combining these results we conclude that the 
are met when the equilibrium vapor pressure 

maximum possible enhancement is given by: 
drops sharply with a reduction in temperature 
(i.e. 9 z A/RT, is large) and. when the super- 

.,I 

Jmax 

jLin 
N” 1 *a .Y 

.&uration required for~nucleation is small (not 

-=Ntc,. -- [ 1 T, a 
(17) much larger than unity) and weakly temperature 

Comparing this with the more general relation 
(14) we see that 

.,l 
0.8 

I 1 

1 -=2’.A(L!‘-X,3’) VI (18) : 
max 4 2 06 

m 

from which it is clear that A cannot be smaller 
than l/A!. For allowable* values of the critical 

5 
> 04 

supersaturation (9 2 1) this is indeed found to z 
be the case (cf. Section 4.1). Physically, the limit a o.2 
s crit + 1 corresponds to the absence of any 
kinetic l~itatio~ on the phase change process ; 

he~cwU%+ P,,P'WI. 

0 IO 20 

2-"& rfh-AwffT* 

FIG. 3. Modified bouudarv-laver thickness as a function of 

4. RESULTS AND DISCUSSION 

4.1 Computation of the dimensionless thickness A 
Figure 3 displays the universal function 

vaporization and critick sbpersaturation parameters 
(dimensionless). 

A(9 - J, 9) o&a&d from equations (6) and 
(8). Values of A read from this plot enable the 
calculation of actual enhanced vaporization 
rates in accord with equations (14) and (18). In 
addition, they can be used to obtain the (dimen- 
sionless) position of nucl~tion within the 
thermal boundary layer, Y, since equations (6) 
and (8) reveal : 

fi = Y + [(l - Y)2/(2 - N)] (19) 

(i.e. Y is only slightly smaller than A when 
Y - Jy is large). One notes that small values 

* Only in the presence of hydrophilic foreign nuclei can 
condensation be induced at “sub~t~atio~“, i.e. ‘*super- 
saturations” less than unity. 

dependent (.N E N/R?; small). Under these 
circumstances the present formulation is in- 
trinsically most accurate, since nucleation occurs 
quite near the surface. Inspection of typical 
t~peratu~ profiles in the vicinity of heated 
isothermal surfaces reveals that the linear ap- 
proximation (b) is quite reasonable for 
(T, - T,)/(T, - T,) < j:(See, for example [13] 
which displays profiles for nonseparated and 
separated laminar boundary layers, both of 
which are expressed in terms of the incomplete 
gamma function.) This implies that the present 
treatment is self-consistent only if Y < f [ 1 - 
(T,/T,)]. For this reason, the function 
A(9 - JV, 9’) has been displayed (Fig. 3) only 
in the (unshad~) region Y < f. 
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4.2 Transport conditions favoring large enhance- 
ments 

If the diffusivity ratio Le z Dv-J[A/l(PCp)]mix 
were near unity, then, according to the well- 
known heat-mass transfer analogy [l 11, the 
Nusselt number ratio NuJNu, would also be 
approximately unity. Equation (16) then reveals 
that condensation within the thermal boundary 
layer cannot possibly enhance vaporization 
rates unless the ambient temperature 
enough to satisfy the simple inequality 

T, < T,.[l -L&Y - J-,9)]. 

When Le # 1, the Nusselt number 

is low 

(20) 

ratio* 
NuJNu, will depend on the numerical value of 
Le (and weakly on the temperature ratio T,/T,, 
when the latter is significantly less than unity). 
For configurations described by correlations of 
the Nusselt power-law form, 

Nu = A’ + B’ . (Re or Gr)” (P@ (21) 

it is readily shown that NuJNu, must lie 
between 1 and (Le)b where the exponent b is 
typically near 4. It follows that conditions in 
which the diffusion coefficient D”-,,,& exceeds 
the mixture thermal diffusivity favor larger 
enhancements. In any particular case, the pre- 
vailing ratio Nu,/Nua is readily estimated from 
equation (21) for use in equation (14). 

4.3 Application to available vaporization data 
As a start we have applied the present formu- 

lation to the experimental conditions recently 
examined by Turkdogan and Mills [3], viz. dif- 
fusion-limited evaporation of inductively heated, 
molten iron-nickel alloy “spheres” [nominal 
diameter = 0.64 cm] magnetically levitated in 
350°K quiescent helium at atmospheric pressure. 

l Strictly speaking, the present analysis holds for local 
vaporization rates, in which case the transfer coefficients, 
Nu, appearing in equations (16) and (19) should be local 
coefficients. Often, however, only average vaporization rates 
(for an entire surface) are of interest, in which case the theory 
applies approximately only if the entire surface is isothermal 
and vaporizing, and one introduces the appropriate average 
transfer coefficients, 

ROSNER 

Surface temperature. OK 

FIG. 4. Predicted and observed vaporization rates for heated, 
molten, iron spheres in quiescent helium (p = 1 atm, 

T, = 350”K, nominal diameter = 064 cm). 

Figure 4 shows the observed and predicted 
variations of the average evaporation rate with 
surface temperature,* together with Turkdogan’s 
graphical prediction [3, 41. Using the same 
transport and thermodynamic data? we have 
also superimposed j&,, as obtained from equa- 
tion (16). While scatter in the available experi- 
mental data precludes a definitive judgement 
concerning the merits of the critical super- 
saturation model, at this stage it is noteworthy 
that (i) the observed vaporization rates fall 
between the predicted bounds j,‘,‘,in and j&, and 
(ii) the present analytical methods rapidly enable 
reasonable estimates to be made of the actual 
enhancements due to nucleation-condensation 
within the thermal boundary layer. The need 

* j”(W predictions have been terminated where the under- 
lying assumptions (no net mass-transfer effect, negligible 
latent heat effect on temperature profile) become indefensible. 
These complicating phenomena, discussed in greater detail 
in Section 4.4, may account for the apparently weaker 
temperature dependence exhibited by the evaporation data. 

t At T, = 2300°K these data led to the values _Y = 18.6, 
JV = 4.5, Y = 8.9, and Le = 045. At 2300°K our predicted 
enhancement is then a factor of 2.9. 
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for such methods is evident from the fact that in the net vaporization rate provided by the 

the present example (cf. Fig. 4) j&, exceeds j&, Hertz-Knudsen equation, is readily incorpora- 

by more than an order of magnitude. However, ted into the previous treatment, with the intro- 

data of higher precision, obtained specifically duction of a single new “evaporation resistance” 

to test the condensation-enhancement mech- parameter (dimensionless) 
anism using a convenient experimental system, 
will be needed to guide future theoretical 
developments. 

[%y-go_. 
.cE (23) 

4.4 Further generalization and discussion of 
assumptions 

It is desirable to have available quantitative 
The tangency condition is found to be identical 

criteria which define the conditions for which 
to equation (6), except for the introduction of 

the assumptions underlying the present treat- 
the factor [I + (c/Y)] on the right-hand side.* 

ment are valid. Ideally, this information would 
In considering the effects of the evaporation 

be provided by a more general analysis which 
resistance parameter on vaporization rates en- 

includes one or more of the phenomena neg- 
hancements due to condensation, one must bear 

lected in the simplest treatment, and thereby 
in mind that 6 will also have an effect in the 

allow the errors to be calculated. However, 
absence of condensation; so it is necessary to 

conditions under which the assumptions become 
distinguish between j,$, and j~i”. ~ = ,,. We find : 

too restrictive can also be estimated using 
.11 

lmin 

simple physical arguments based on the existing jk. c = o 
analysis. Both approaches are illustrated below. -1 

44.1 l~ter~c~l resistance to ev~or~tio~. Re- . 
(24) 

laxation of the assumption p_ = py. ,,n(Tw) well 
= l + @vu&v& - (TJrJ] i I 

illustrates the value of the present analytical Keeping this distinction in mind, the most 
formulation, since this generalization is readily convenient generalization of equation (14) be- 
formulated and solved with the introduction of comes : 

only one additional dimensionless parameter. .,, 
J 

Moreover, when the effect is small, a perturba- 
tion approach provides a simple expression for 

jikr=O 

the magnitude of the p_, # p,,_(T,) effect in 
terms of the solution already presented. 

={!!%.(I -~).${I +;}-I (25) 

Whenever there is a net flux of vapor, the 
difference P,&T,) - p_, is non-zero and is 

where, now d = A(..9 - N, 9, C) 

governed by the evaporation coefficient [14] tt 
There is a very simple and useful relationship 

appearing in the generalized boundary con- 
between the evaporation resistance parameter L, 

dition : 
the maximum vaporization rate j& given by 
equation (17), and the corresponding rate, j;h,, 
at which vaporization would occur in a perfect 
vacuum. Since the latter is given by 

P”. .qw - P”. w I RT, * 
(22) 

This boundary condition, which equates the 
diffusional vapor flux away from the surface to 

* The relation between Y and A [equation (1911 remains 
unaltered when 6 f 0. 
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[obtained by ietting p_ ~ -+ 0 in the right-hand 
side of equation (22)], equations (17, 23) and 
(26) reveal 

(27) 

As an example, from this relation and the values 
of j:JT,) for Fe(l) given in [4] we readily find 
that for the evaporation experiment discussed 
in Section 4.3, c = 2.7 x 10T3 at T, = 2300°K. 
This leads to about a 0.4 per cent reduction in 
the predicted vaporization rate at this tempera- 
ture and a slightly reduced temperature depen- 
dence ofj”(T’,) when the effect is included at other 
temperatures. 

When 6 is small compared to unity, it is 
reasonable to evaluate the effects of non-zero t 
by seeking parameter expansions of the form 

Y(U - Jv-, Y, 6) = Y@)(Y - N, 9) 

+ L Y”‘(Y - V 9) + Y . . . . (28) 

d(Y - Jv-, Y. 6) = LP’(Y - Jv, Y) 

+ 6 A”‘(9 - Jv-, 9) + . . . (29) 

where Y(O) and 4”’ have already been obtained 
from the solution to the c = 0 problem. Inserting 
equation (28) into the generalized tangency 
condition and collecting equal powers of t 
reveals that Y(l) bears the following simple 
relation to Y(O): 

y(1) = (1 - yCOY 1 
y(O) . (3 - N) - 2[1 - Y(O)] 

(30) 

in terms of which 

A”’ = y(l) _ (1 - Y(O))2 
Y’O) (9 - .,V) . 

(31) 

Thus, when c is small, the relative error in A due 
to finite evaporation resistance is simply c 
A’l’/A’o’, which, together with equations (30,3 1). 
can be used to estimate the effects on conden- 
sation-enhanced vaporization rates. When 6 is 
not small (say, > IO- ‘) the perturbation ap- 
proach loses its value. and a direct solution of 

the more general problem is necessary. The 
effects of L on the dimensionless diffusion layer 
thickness A are illustrated in Fig. 5 for the 
particular case Y = 10. The dashed (small C) 
behavior is that obtained from the perturbation 
approach when only linear terms in c are in- 
cluded. 

k . t I 
0 

IO 

_[D,_,,,(-ar/a~)lrl,., 

‘= (a/4)raR;T,/(d#‘Z 

FIG. 5. ENect of interfacial rcsistanw to evaporation on the 
diffusion boundary-layer thickness in the presence of 

condensation (9 = 10). 

4.4.2 Departuresfrom linear temperature profile 
(a, b). If the remaining assumptions underlying 
the treatment of Section 3 are retained and only 
(a) and (b) are dropped, the analysis is compli- 
cated only in that the position of nucleation 
must be found in each case from the actual 
TQ profile, together with a solution to the 
source-free diffusion equation in which the 
tangency condition is imposed as one 
“boundary” condition. While this can certainly 
be carried out graphically or numerically for 
flow configurations of particular interest, one 
forfeits the ability to obtain results with the 
generality of those given in Section 3. Limiting 
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our solutions to the “film theory” case of 
nucleation within a locally linear temperature 
profile or to cases in which the condensation 
enhancement is relatively large (cf. unshaded 
region of Fig. 3) is. accordingly, the price we 
have paid for the generality gained. Interestingly 
enough. only if L,e x 1 is assumption (b) 
removable. with the quantities Y. A being 
redefined such that equations (6) and (8) remain 
valid [16]. 

4.4.3 Net interfacial mass transfer (Stefan- 
Nusselt flow) effect [5, IS]. In the absence of 
condensation, the net mass transfer effect due 
to heterogeneous vaporization (or. equivalently. 
the “moving boundary” effect) is known to be 
governed by a dimensionless mass-transfer 
parameter of the form [5] 

C”. q(L) - C”. m 

Bdiff = 1 - c,*,,(T,) (32) 

which, in the present case, must be small com- 
pared to unity.* Clearly, this is true when the 
vapor mass fraction at y = 0 is itself small 
compared to unity (i.e. when M,p,,,(T,) << 
M,i9). For an evaporating liquid, however, the 
approximation degenerates rapidly as one ap- 
proaches its boiling point at the prevailing 
pressure (i.e. when p,_(T,) -+ p, &f + 00). 
Applied to the Fe(l)/He(g) example (i.e. M, = 
55.95, M,, = 4.003) at 1 atm we find that Bd$f 
is approximately lo- ’ near T, = 2300°K but 
is already 1 at T, = 2600°K. In the present case 
we therefore conclude that the interracial mass 
velocity effect cannot be neglected for surface 
temperatures much above 2300-2400°K. This 
implies, of course, that even the j~i”(Tw) pre- 
diction must be modified above these surface 
temperatures. 

4.4.4 Heat of condensation effect on tempera- 
ture profile. The reduction in vapor pressure at 
y = y, due to condensation must be accom- 
panied by the evolution of heat. If this heat 
were adiabatically delivered to the “carrier gas”, 

l Wtml B,,, is small, the relative error in j;,. due to this 
cause is about fB,,, (cf. [ 15 3). 

one can readily estimate the temperature rise at 
this location and compare the result to T, - T.. 
In this way we find that when the surrounding 
gas is monatomic (as in the present example, for 
which MHc~p,He = 5R/2) the temperature rise 
due to condensation will be negligible compared 
to T, - T. if 

Evaluation of this parameter for the present 
Fe(l)/He(g) example leads to a conclusion similar 
to that obtained in Section 4.4.3. viz predictions 
above about 2300-2400°K will be in error due 
to temperature profile modifications associated 
with the condensation process itself. This num- 
erical example indicates that any self-consistent 
generalized theory of condensation-enhanced 
vaporization which accounts for the heat of 
condensation effect should simultaneously in- 
clude the Stefan flow effect. and vice versa. But 
combined treatment of this more general prob- 
lem is beyond the scope of the present paper. 

4.4.5 Effect of more realisric nucleation kinetic 
law. The simplicity of the critical supersatura- 
tion model and the existence of s,,it(T) data 
provide ample justification for first exploiting 
this approximation in the relatively unstudied 
area of condensation phenomena within bound- 
ary layers (i.e. with molecular transport). How- 
ever, to gain deeper insight into the nature of 
the approximations implicit in the critical 
supersaturation approach and to provide a 
general formalism suitable for use as more 
realistic condensation-growth kinetic data be- 
come available, studies using classical homo- 
geneous nucleation theory have been initiated 

WI. 

5. CONCLUSIONS 

By making a reasonable assumption (c) con- 
cerning the form of the critical supersaturation 
vs. temperature relation, simple analytical ex- 
pressions [equations (14) and (18)] have been 
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derived the enhancement in 

on a minimum number of 
the 

physicochemical conditions under 
in vaporization rates can 

expected. It is hoped the present treatment 
of this model 

with experimental data, as well as open the way 
further generalizations 4) 

practical interest. To 
in this general area of mass transport 

phenomena are 
required for systems on equation 
(14)] should in 
vaporization rates due condensation within 
the thermal boundary layer. In this connection. 
it should be 
is expected in 

as well. Indeed, of these 
systems may provide experimental advantages, 

and equally 
fruitful. 
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Rbam&--Les conditions gtnerales sous lesquelles la condensation dam la couche limite thermique peut 
renforcer les vitesses d’evaporation limit&es par la diffusion de liquidea ou de solidea dam des ambiances 
plus froides sont examintcs thtoriquement, en se basant sur la notion que la condensation se produit 
lorsqu’une “sursaturation critique” est obtenue Des expressions simples sont obtenues pour I’augmentation 
prtvue en fonction de la chaleur de vaporisation sans dimensions A/RT, de la suraaturation critique 
tvalu& a la temperature de surface s&T,) = pv, nt JpY,,,(TI)) d d’un paramttte qui r&it la dCpendance 
de s.,,, en fonction de la temperature. Ces rQultats montrent clairement la conditions thermodynamiques 
et de transport sous lesquelles de granda augmentations peuvent &re attendues La facilite avec laquelle 
ils ont pu &re utili&s pour des previsions absolua et la comparaison avec les don&es disponibla est 
illustrCe dam le cas de spheres de fer fondu s’evaporant dans de I’helium au repos a pression atmosphtrique. 
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B--Es werden die allgemcinen Bedingungen analytisch untersuchf unter welchen die 
durch Diffusion begrenzten Verdunstungsgeschwindigkeiten von Fliissigkeiten oder festen Stoffen in 
kiilterer Umgebung dadurch vergr&ssert werden, dass Kondensation innerhalb der therm&hen Grenz- 
schibht auftritt. Dabei wird davon ausgegangen, dass die Kondensation dann eintritt, wenn eine “kritische 
ObersHttigung” erreicht ist Einfache Ausdtiicke fiir die erwartete Geschwindigkeitsvergr&senmg werden 
abgeleitet als Funktion der dimensionslosen Verdampfungswkme h/RT, der kritischen Obersiittigung, 
ermittelt bei der OberIliichentemperatur s,,,,(Tw) = py, c,,Jpv, ,& T,) und einem Parameter, der die Temperatur- 
abhlngigkeit von s,,,, beriicksichtigt. Diese Ergebmsse zeigen klar die thermodynamischen und die Trans- 
portbedingungen, unter denen starke Geschwindigkeitsvergr&serungen erwartet werden k6nnen. Die 
Einfachheit, mit der diesc Ergebnisse fti absolute Vorhersagen und fur Vergleiche mit vorhandenen Daten 
angewendet werden kennen, wird demonstriert am Beispiel geschmolzener Eisenkugeln, die bei Atmos- 

pharendruck in ruhendes Helium verdampfen. 

AaaoTaqnR-Ha OCHoaaHWW nony~eHwn, YTO KOH!JeHCaqMR IlpOWCXO~WT np# ~OCTMH(eHHM 

wHpHTxqecKor0 nepeHacblqeHnfl*, aHaJIWTH~eCKM HCCne~OBanKCb o6uwe ~CSIOBHR, np~ 
KOTOpNX KOFiReHCaqHR B TeILIOBOM nOrpaHWIHOM CJIOe MOWeT yBeJlWiKTb CKOpOCTH i(K@- 

~yaeotiHor0 IicnapeHm HwnKocTell Km TBep;lNx hen B 6oaee xono;laott cpeae. RNBeneHN 

rrpocTble 

(Tw) = ~v.crit/~v.ep (Tw), 
OueHeHHorO npK TemnepaType noeepx- 

H napahferpa, ormNsai0uero TemnepaTypHylo 3aBmK- 

MOCTb SEIIl. 3TB peaynbTaTN RCHO OTO6paHtamT TepmonKHaMmecKHe yCJIOBKH H ycnoswfl 

nepesoca, npki K~T~PNX MOmHO OHwRaTb donbuloe yBenwieHMe TeMna wznapewifi. B RHA~ 

WIJIiOCTpaI&IH cnpaBe~nmocTi~ npmeHeHm naHHor0 MeTo;Ia 0qeHKK M coenaxemfl C 

~Memqmwcfl CBe~eHkiHnM npaBoaKTcfl czyqait AcnapeHm Kane;rb wfnKor0 HteAeaa 13 

KenOilBKHcHNfi re;r& npkl aTMOC@epHOM RaBJlCHHK. 


